Classification of Documents using Text Mining Package “tm”

Pavel Brazdil
LIAAD - INESC Porto LA
FEP, Univ. of Porto

Overview

1. Introduction
2. Preprocessing document collection in “tm”
 2.1 The dataset 20Newsgroups
 2.2 Creating a directory with a corpus for 2 subgroups
 2.3 Preprocessing operations
 2.4 Creating Document-Term matrix
 2.5 Converting the Matrix into Data Frame
 2.6 Including class information
3. Classification of documents
 3.1 Using a kNN classifier
 3.2 Using a Decision Tree classifier
 3.3 Using a Neural Net
1. Introduction

Package “tm” of R permits to process text documents in an effective manner.

The work with this package can be initiated using a command

```r
> library(tm)
```

It permits to:

- Create a corpus – a collection of text documents
- Provide various preprocessing operations
- Create a Document-Term matrix
- Inspect / manipulate the Document-Term matrix (e.g. convert into a data frame needed by classifiers)
- Train a classifier on pre-classified Document-Term data frame
- Apply the trained classifier on new text documents to obtain class predictions and evaluate performance

2 Classification of documents

2.1 The dataset 20Newsgroups

This data is available from

http://people.csail.mit.edu/jrennie/20Newsgroups/

There are two directories:

- 20news-bydate-train (for training a classifier)
- 20news-bydate-test (for applying a classifier / testing)

Each contains 20 directories, each containing the text documents belonging to one newsgroup.

The data can be copied to a PC you are working on (it is more convenient)
20Newsgroups

Subgroup “comp”
 comp.graphics
 comp.os.ms-windows.misc
 comp.sys.ibm.pc.hardware
 comp.sys.mac.hardware
 comp.windows.x

Subgroup “misc”
 misc.forsale

Subgroup “rec”
 rec.autos
 rec.motorcycles
 rec.sport.baseball
 rec.sport.hockey

Subgroup “sci”
 sci.crypt
 sci.electronics <- chosen here
 sci.med
 sci.space

Subgroup “talk.politics”
 talk.politics.guns
 talk.politics.mideast
 talk.politics.misc

Subgroup “religion”
 talk.religion.misc <- chosen here
 alt.atheism
 soc.religion.christian

2.2 Creating a Corpus

This involves:
- Selecting one of the newsgroups (e.g. sci.electronics)
- Invoking "Change directory" in R to 20news-bydate-train
- Invoking the instruction Corpus():
 sci.electr.train <- Corpus(DirSource ("sci.electronics"),
 readerControl=list(reader=readNewsgroup, language="en_US"))

If we type:
 > sci.electr.train or length(sci.electr.train)
 the system responds "A corpus with 591 documents"

Similarly, we can obtain documents from another class (e.g. talk.religion.misc):
 talk.religion.train (377 documents)

Similarly, we can obtain the test data:
 sci.electr.test (393 documents)
 talk.religion.test (251 documents)
Example of one document

sci.electr.train[1]
An object of class “NewsgroupDocument”
[1] “In article <00969FBA.E640FF10@AESOP.RUTGERS.EDU>
mcdonald@AESOP.RUTGERS.EDU writes:”
[2] “[..]”
[3] “>There are a variety of water-proof housings I could use but the real meat”
[4] “>of the problem is the electronics...hence this posting. What kind of”
[5] “>transmission would be reliable underwater, in murky or even night-time”
[6] “>conditions? I'm not sure if sound is feasible given the distortion under-”
[7] “>water...obviously direction would have to be accurate but range could be”
[8] “>relatively short (I imagine 2 or 3 hundred yards would be more than enough)”
[9] “>”
[10] “>Jim McDonald”
...
[35] “ET "Tesla was 100 years ahead of his time. Perhaps now his time comes."”
[36] “----"
2.3 Preprocessing

The Objective of Preprocessing:

Documents are normally represented using words, terms or concepts. Considering all possible words as potential indicators of a class can create problems in training a given classifier.

It is desirable to avoid building a classifier using dependencies based on too few cases (spurious regularities).

The aim of preprocessing is to help to do this.

The function `tmMap` (available in “tm”) can be used to carry out various preprocessing steps.

The operation is applied to the whole corpus (there is not need to program this using a loop).

Preprocessing using `tmMap`

The format of this function is as follows:

```
tmMap(Corpus, Function)
```

The second argument `Function` determines what is to be done:

- `asPlain` – removes XML from the document,
- `removeSignature` – removes the author of the message,
- `removeWords, stopwords(language='english')` – removes stopwords for the language specified
- `stripWhitespace` – removes extra spaces,
- `tmTolower` – transforms all upper case letters to lower case,
- `removePunctuation` – removes punctuation symbols,
- `removeNumbers` – removes numbers,

Example of use:

```
> sci.electr.train <- tmMap(sci.electr.train, asPlain)
> sci.electr.train <- tmMap (sci.electr.train, removeSignature)
``` etc.

This can be repeated for the other 3 collections of documents
Merging document collections

Instead of repeating this for all 4 documents collections, we can merge the four document collections and perform the preprocessing on the resulting large collection only once.

This can be done using the function `c()`:

\[
\text{sci.rel.tr.ts} \leftarrow c(\text{sci.electr.train}, \text{talk.religion.train}, \text{sci.electr.test}, \text{talk.religion.test})
\]

A text document collection with 1612 text documents.

We need to remember the indices of each document sub-collection to be able to separate the document collections later.

- `sci.electr.train` – documents 1 .. 591
- `talk.religion.train` – documents 592 .. 968 (377 docs)
- `sci.electr.test` – documents 969 .. 1361 (393 docs)
- `talk.religion.test` – documents 1362 .. 1612 (251 docs)

One single collection is important for the next step (document-term matrix)

Preprocessing the entire document collection

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts, asPlain)}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, removeSignature)}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, removeWords, stopwords(language=“english”))}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, stripWhitespace)}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, tm Tolower)}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, removePunctuation)}
\]

\[
\text{sci.rel.tr.ts.p} \leftarrow \text{tmMap(sci.rel.tr.ts.p, removeNumbers)}
\]
Result of preprocessing of one document

Original document:
> sci.rel.tr.ts[1] (=sci.electr.train[1])
An object of class "NewsgroupDocument"
[1] "In article <00969FBA.E640FF10@AESOP.RUTGERS.EDU>
mcdonald@AESOP.RUTGERS.EDU writes:"
[2] ">[...]
[3] ">There are a variety of water-proof housings I could use but the real meat"
[4] ">of the problem is the electronics, hence this posting. What kind of"
[5] ">transmission would be reliable underwater, in murky or even night-time"
[6] ">conditions? I'm not sure if sound is feasible given the distortion under-"

Pre-processed document:
> sci.rel.tr.ts.p[1]
[1] in article fbaeffaesoprutgersedu mcdonaldaesoprutgersedu writes
[2]
[3] there variety waterproof housings real meat
[4] of electronics hence posting
[5] transmission reliable underwater murky nighttime
[6] conditions sound feasible distortion under

2.4 Creating Document-Term Matrix (DTM)

Existing classifiers that exploit propositional representation, (such as kNN, NaiveBayes, SVM etc.) require that data be represented in the form of a table, where:
each row contains one case (here a document),
each column represents a particular attribute / feature (here a word).

The function DocumentTermMatrix(..) can be used to create such a table.
The format of this function is:
DocumentTermMatrix(<DocCollection>, control=list(<Options>))

Simple Example:
> DocumentTermMatrix(sci.rel.tr.ts.p)

Note:
This command is available only in R Version 2.9.1
In R Version 2.8.1 the function available is TermDocMatrix(<DocCollection>)
Creating Document-Term Matrix (DTM)

Simple Example:
> DocumentTermMatrix(sci.rel.tr.ts.p)
A document-term matrix (1612 documents, 21967 terms)

Non-/sparse entries: 121.191/35.289.613
Sparsity : 100%
Maximal term length: 135
Weighting : term frequency (tf)

Options of DTM

Most important options of DTM:
weighting=TfIdf weighting is Tf-Idf
minWordLength=WL the minimum word length is WL
minDocFreq=ND each word must appear at least in ND docs

Other options of DTM
These are not really needed, if preprocessing has been carried out:
stemming = TRUE stemming is applied
stopwords=TRUE stopwords are eliminated
removeNumbers=True numers are eliminated

Improved example:
> dtm.mx.sci.rel <- DocumentTermMatrix(sci.rel.tr.ts.p,
 control=list(weighting=weightTfIdf, minWordLength=2, minDocFreq=5))
Generating DTM with different options

```r
> dtm.mx.sci.rel <- DocumentTermMatrix( sci.rel.tr.ts.p,
   control=list(minWordLength=2, minDocFreq=5))

> dtm.mx.sci.rel
A document-term matrix (1612 documents, 1169 terms)
Non-/sparse entries: 2.237/1.882.191
Sparsity : 100%
Maximal term length: 26
Weighting : term frequency (tf)

> dtm.mx.sci.rel.tfidf <- DocumentTermMatrix( sci.rel.tr.ts.p,
   control=list(weighing=weightTfIdf, minWordLength=2, minDocFreq=5))

> dtm.mx.sci.rel.tfidf
A document-term matrix (1612 documents, 1169 terms)
Non-/sparse entries: 2.237/1.882.191
Sparsity : 100%
Maximal term length: 26
Weighting : term frequency - inverse document frequency (tf-idf)
```

Inspecting the DTM

Function `dim(DTM)` permits to obtain the dimensions of the DTM matrix.

Ex.
```r
> dim(dtm.mx.sci.rel)
1612   1169
```

Inspecting some of the column names:
(ex. 10 columns / words starting with column / word 101)
```r
> colnames(dtm.mx.sci.rel)[101:110]
[1] "blinker"  "blood"   "blue"    "board"   "boards"  "body"    "bonding"  "book"   "books"  
[10] "born"
```
Inspecting the DTM

Inspecting a part of the DTM matrix:
(ex. the first 10 documents and 20 columns)

```r
> inspect(dtm.mx.sci.rel)[1:10,101:110]
```

<table>
<thead>
<tr>
<th>Docs</th>
<th>blinker</th>
<th>blood</th>
<th>blue</th>
<th>board</th>
<th>boards</th>
<th>body</th>
<th>bonding</th>
<th>book</th>
<th>books</th>
<th>born</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
```

As we can see, the matrix is very sparse. By chance there are no values other than 0s.

Note: The DTM is not an ordinary matrix, as it exploits object-oriented representation (includes meta-data).
The function inspect(…) converts this into an ordinary matrix which can be inspected.

Finding Frequent Terms

The function `findFreqTerms(DTM, ND)` permits to find all the terms that appear in at least ND documents.

Ex.
```r
> freqterms100 <- findFreqTerms(dtm.mx.sci.rel, 100)
> freqterms100
[1] "wire" "elohim" "god" "jehovah" "lord"
```

```r
> freqterms40 <- findFreqTerms(dtm.mx.sci.rel, 40)
> freqterms40
[1] "cable" "circuit" "ground" "neutral" "outlets" "subject" "wire" "wiring"
[9] "judas" "ra" "christ" "elohim" "father" "god" "gods" "jehovah"
[17] "jesus" "lord" "mcconkie" "ps" "son" "unto"
```

```r
> freqterms10 <- findFreqTerms(dtm.mx.sci.rel, 10)
> length(freqterms10)
[1] 311
```
### 2.5 Converting TDM into a Data Frame

Existing classifiers in R (such as kNN, NaiveBayes, SVM etc.) require that data be represented in the form of a **data frame** (particular representation of tables).

So, we need to convert DT matrix into a DT data frame:

```r
> dtm.sci.rel <- as.data.frame(inspect(dtm.mx.sci.rel))
> rownames(dtm.sci.rel) <- 1:nrow(dtm.mx.sci.rel)

> dtm.sci.rel$wire[180:200]
[1] 0 6 0 8 10 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> dtm.sci.rel$god[180:200]
[1] 0

> dtm.sci.rel$wire[(592+141):(592+160)]
[1] 0
> dtm.sci.rel$god[(592+141):(592+160)]
[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```

### Converting TDM into a Data Frame

We repeat this also for the tf.idf version:

```r
> dtm.sci.rel.tfidf <- as.data.frame(inspect(dtm.mx.sci.rel.tfidf))
> round(dtm.sci.rel.tfidf$wire[180:200],1)
[1] 0.0 8.3 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> round(dtm.sci.rel.tfidf$god[180:200],1)
[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

> round(dtm.sci.rel.tfidf$wire[(592+141):(592+160)],1)
[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> round(dtm.sci.rel.tfidf$god[(592+141):(592+160)],1)
[1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
```
2.6 Appending class information

This includes two steps:
- Generate a vector with class information,
- Append the vector as the last column to the data frame.

Step 1. Generate a vector with class values (e.g. "sci", "rel")
We know that (see slide 6):

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Number of Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>sci.electr.train</td>
<td>591</td>
</tr>
<tr>
<td>talk.religion.train</td>
<td>377</td>
</tr>
<tr>
<td>sci.electr.test</td>
<td>393</td>
</tr>
<tr>
<td>talk.religion.test</td>
<td>251</td>
</tr>
</tbody>
</table>

So:
```r
> class <- c(rep("sci",591), rep("rel",377), rep("sci",393), rep("rel",251))
> class.tr <- c(rep("sci",591), rep("rel",377))
> class.ts <- c(rep("sci",393), rep("rel",251))
```

Step 2. Append the class vector as the last column to the data frame
```r
> dtm.sci.rel <- cbind(dtm.sci.rel, class)
> ncol(dtm.sci.rel)
[1] 1170 (the number of columns has increased by 1)
```

3 Classification of Documents
3.1 Using a KNN classifier

Preparing the Data

The classifier kNN in R requires that the training data and test data have the same size.
So:

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Number of Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>sci.electr.train</td>
<td>591</td>
</tr>
<tr>
<td>talk.religion.train</td>
<td>377</td>
</tr>
<tr>
<td>sci.electr.test</td>
<td>393</td>
</tr>
<tr>
<td>talk.religion.test</td>
<td>251</td>
</tr>
</tbody>
</table>

So:
```r
> l1 <- length(sci.electr.train) (591 docs)
> l2 <- length(talk.religion.train) (377 docs)
> l3 <- length(sci.electr.test) (393 docs)
> l4 <- length(talk.religion.test) (251 docs)
```

```r
> m1 <- min(l1,l3) (393 docs)
> m2 <- min(l2,l4) (251 docs)
> m3 <- min(l1,l3) (393 docs)
> m4 <- min(l2,l4) (251 docs)
```
Preparing the training data

**Generating the training data:**
Calculate the last column of data (excluding the class):
```r
> last.col <- ncol(dtm.sci.rel)-1
```
Generate the first part of the training data with lines of `sci.electr.train`
```r
> sci.rel.tr <- dtm.sci.rel[1: m1, 1:last.col]
```
Generate a vector with the class values:
```r
> class.tr <- dtm.sci.rel[1: m1, last.col+1]
```
Extend the training data by adding lines from `talk.religion.train`
```r
> sci.rel.k.tr[(m1+1):(m1+m2),] <- dtm.sci.rel[(l1+1):(l1+m2),1:last.col]
> nrow(sci.rel.k.tr)
644
```
Add class values at the end of the class vector:
```r
> class.k.tr[(m1+1):(m1+m2)] <- dtm.sci.rel[(l1+1):(l1+m2), last.col+1]
> length(class.tr)
644
```

Preparing the test data

Generate the test data using the appropriate lines of `sci.electr.test` and `talk.religion.test`
```r
> sci.rel.k.ts <- dtm.sci.rel[(l1+l2+1):(l1+l2+m3+m4),1:last.col]
> nrow(sci.rel.k.ts)
644
> class.k.ts <- dtm.sci.rel[(l1+l2+1):(l1+l2+m3+m4),last.col+1]
```
3.2 Classification of Docs using a Decision Tree

Here we will use the same training / test data as in
> library(rpart)

Here we will use just 20 frequent terms as attributes
> freqterms40
[1] "cable" "circuit" "ground" "neutral" "outlets" "subject" "wire"
[8] "wiring" "judas" "ra" "christ" "elohim" "father" "god"
[15] "gods" "jehovah" "jesus" "lord" "mcconkie" "ps" "son"
[22] "unto"
> dt <- rpart(class ~ cable + circuit + ground + neutral + outlets + subject + wire +
wiring + judas + ra + christ + elohim + father + god + gods + jehovah + jesus +
lord + mcconkie + ps + son + unto, sci.rel.tr)

Inspecting the Decision Tree

> dt
n= 968
node), split, n, loss, yval, (yprob)
  * denotes terminal node
1) root 968 377 sci (0.3894628 0.6105372)  
  2) god>=2.5 26 0 rel (1.0000000 0.0000000) *
  3) god< 2.5 942 351 sci (0.3726115 0.6273885)  
       6) jesus>=2.5 16 0 rel (1.0000000 0.0000000) *
       7) jesus< 2.5 926 335 sci (0.3617711 0.6382289) *
Evaluating the Decision Tree

```r
> dt.predictions.ts <- predict(dt, sci.rel.ts, type="class")
> table(class.ts, dt.predictions.ts)

dt.predictions.ts
class.ts rel sci
 rel 22 229
 sci 0 393
```

3.3 Classification of Documents using a Neural Net

Acknowledgements:
Rui Pedrosa, M.Sc. Student, M. ADSAD, 2009

```r
> nnet.classifier <- nnet(class ~., data=sci.rel.tr, size=2, rang=0.1, decay=5e-4, maxit=200)
> predictions <- predict(nnet.classifier, sci.rel.ts, type="class")

The errors reported on a similar task were quite good - about 17%
```
5. Calculating the evaluation measures

The basis for all calculations is the confusion matrix, such as:

```r
> conf.mx <- table(class.ts, predictions.ts)
> conf.mx
class.ts rel sci
 rel 201 50
 sci 3 390
> error.rate <- (sum(conf.mx) – diag(conf.mx)) / sum(conf.mx)
> tp <- conf.mx[1,1] (true positives)
> fp <- conf.mx[2,1] (false positives)
> tn <- conf.mx[2,2] (true negatives)
> fn <- conf.mx[1,2] (false negatives)
> error.rate <- (tp + tn) / (tp + tn + fp + fn)
```

Recall = \( \frac{TP}{TP + FN} \times 100\% \)

Precision = \( \frac{TP}{TP + FP} \times 100\% \)

Evaluation measures

```r
> recall = tp / (tp + fn)
> precision = tp / (tp + fp)
> f1 = 2 * precision * recall / (precision + recall)
```